Optimal thought and optimal fitness through reason, logic, science, passion, and wisdom.
Scurvy: An Example of Science vs. the Scientific Community
Scurvy: An Example of Science vs. the Scientific Community

Scurvy: An Example of Science vs. the Scientific Community

In “Scott and Scurvy” (Idle Words, 6 March 2010), Maciej Cegłowski writes:

One of the most striking features of the disease is the disproportion between its severity and the simplicity of the cure. Today we know that scurvy is due solely to a deficiency in vitamin C, a compound essential to metabolism that the human body must obtain from food. Scurvy is rapidly and completely cured by restoring vitamin C into the diet. 

Except for the nature of vitamin C, eighteenth century physicians knew this too. But in the second half of the nineteenth century, the cure for scurvy was lost. The story of how this happened is a striking demonstration of the problem of induction, and how progress in one field of study can lead to unintended steps backward in another. 

An unfortunate series of accidents conspired with advances in technology to discredit the cure for scurvy. What had been a simple dietary deficiency became a subtle and unpredictable disease that could strike without warning. Over the course of fifty years, scurvy would return to torment not just Polar explorers, but thousands of infants born into wealthy European and American homes. And it would only be through blind luck that the actual cause of scurvy would be rediscovered, and vitamin C finally isolated, in 1932.


In his article he writes an interesting story illustrating how knowledge can be gained and lost through history and how drawing valid causal connections can be difficult — especially when individuals do not have understanding of aspects of epistemology.

As he says:

Now, I had been taught in school that scurvy had been conquered in 1747, when the Scottish physician James Lind proved in one of the first controlled medical experiments that citrus fruits were an effective cure for the disease. From that point on, we were told, the Royal Navy had required a daily dose of lime juice to be mixed in with sailors’ grog, and scurvy ceased to be a problem on long ocean voyages.

But here was a Royal Navy surgeon in 1911 apparently ignorant of what caused the disease, or how to cure it. Somehow a highly-trained group of scientists at the start of the 20th century knew less about scurvy than the average sea captain in Napoleonic times. Scott left a base abundantly stocked with fresh meat, fruits, apples, and lime juice, and headed out on the ice for five months with no protection against scurvy, all the while confident he was not at risk. What happened?


One problem was the misintegration and flawed reasoning of some people, similar to the misintegration and flawed reasoning that produced the geocentric hypothesis, the caloric hypothesis, and the rejection of Semmelweiss’ work on the need to wash one’s hands:

Doctors of the era looked at this puzzling evidence and wondered. Other diseases had recently been shown to have their source in bacterial infection. The bacterial model was new, and had already had spectacular success in identifying and treating diseases like typhus, tuberculosis, and cholera. What if the cause of scruvy had also been misunderstood? What if instead of a deficiency disease, scurvy was actually a kind of chronic food poisoning from bacterial contamination of meat? Thus was born the ptomaine theory of scurvy, and Koettlitz became its enthusiastic backer:

“That the cause of the outbreak of scurvy in so many Polar expeditions has always been that something was radically wrong with the preserved meats, whether tinned or salted, is practically certain; that foods are scurvy-producing by being, if only slightly, tainted is practically certain; that the benefit of the so-called ‘antiscorbutics’ is a delusion, and that some antiscorbutic property has been removed from foods in the process of preservation is also a delusion. An animal food is either scorbutic—in other words, scurvy-producing—or it is not. It is either tainted or it is sound. Putrefactive change, if only slight and tasteless, has taken place or it has not. Bacteria have been able to produce ptomaines in it or they have not; and if they have not, then the food is healthy and not scurvy-producing.”

The ’ptomaine’ in the theory was never really defined, other than as a noxious waste product of bacterial action. But the theory had an internal logic. Poorly preserved meats would be contaminated by ptomaine. Under normal conditions, this was not enough to cause scurvy. Not only did fresh food consumed in the diet have a kind of antidote effect (whether it worked by neutralizing the poison, or by simply displacing it in the diet, was not clear), but environment also played an important role. Certain factors seemed to predispose people to chronic ptomaine poisoning, including darkness, intense exertion, idleness, close air, prolonged confinement and cold.


The article, like our history, would be improved here and there by an understanding of a rational epistemology — understanding concepts, concept-formation, induction, context, etc.

But a recommended read and a start on one’s own research and on thinking about thinking. And on taking some ancient beliefs more seriously.

Leave a Reply

Your email address will not be published. Required fields are marked *