In “Archimedes: Greek Mathematician,” Gerald J. Toomer (Professor Emeritus of the History of Mathematics, Brown University, Providence, Rhode Island) writes:

Method Concerning Mechanical Theoremsdescribes a process of discovery in mathematics. It is the sole surviving work from antiquity, and one of the few from any period, that deals with this topic. In it Archimedes recounts how he used a “mechanical” method to arrive at some of his key discoveries, including the area of a parabolic segment and the surface area and volume of a sphere. The technique consists of dividing each of two figures into an infinite but equal number of infinitesimally thin strips, then “weighing” each corresponding pair of these strips against each other on a notional balance to obtain the ratio of the two original figures. Archimedes emphasizes that, though useful as a heuristic method, this procedure does not constitute a rigorous proof.

On Floating Bodies(in two books) survives only partly in Greek, the rest in medieval Latin translation from the Greek. It is the first known work on hydrostatics, of which Archimedes is recognized as the founder. Its purpose is to determine the positions that various solids will assume when floating in a fluid, according to their form and the variation in their specific gravities. In the first book various general principles are established, notably what has come to be known as Archimedes’ principle: a solid denser than a fluid will, when immersed in that fluid, be lighter by the weight of the fluid it displaces. The second book is a mathematical tour de force unmatched in antiquity and rarely equaled since. In it Archimedes determines the different positions of stability that a right paraboloid of revolution assumes when floating in a fluid of greater specific gravity, according to geometric and hydrostatic variations.…

Given the magnitude and originality of Archimedes’ achievement, the influence of his mathematics in antiquity was rather small. Those of his results that could be simply expressed—such as the formulas for the surfacearea and volume of a sphere—became mathematical commonplaces, and one of the bounds he established for π,

^{22}/_{7}, was adopted as the usual approximation to it in antiquity and the Middle Ages. Nevertheless, his mathematical work was not continued or developed, as far as is known, in any important way in ancient times, despite his hope expressed inMethodthat its publication would enable others to make new discoveries. However, when some of his treatises were translated into Arabic in the late 8th or 9th century, several mathematicians of medieval Islam were inspired to equal or improve on his achievements. That holds particularly in the determination of the volumes of solids of revolution, but his influence is also evident in the determination of centres of gravity and in geometric construction problems. Thus, several meritorious works by medieval Islamic mathematicians were inspired by their study of Archimedes.The greatest impact of Archimedes’ work on later mathematicians came in the 16th and 17th centuries with the printing of texts derived from the Greek, and eventually of the Greek text itself, the

Editio Princeps, in Basel in 1544. The Latin translation of many of Archimedes’ works by Federico Commandino in 1558 contributed greatly to the spread of knowledge of them, which was reflected in the work of the foremost mathematicians and physicists of the time, including Johannes Kepler (1571–1630) and Galileo Galilei (1564–1642). David Rivault’s edition and Latin translation (1615) of the complete works, including the ancient commentaries, was enormously influential in the work of some of the best mathematicians of the 17th century, notably René Descartes (1596–1650) and Pierre de Fermat (1601–65). Without the background of the rediscovered ancient mathematicians, among whom Archimedes was paramount, the development of mathematics in Europe in the century between 1550 and 1650 is inconceivable. It is unfortunate thatMethodremained unknown to both Arabic and Renaissance mathematicians (it was only rediscovered in the late 19th century), for they might have fulfilled Archimedes’ hope that the work would prove useful in the discovery of theorems.